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ABSTRACT:
Causal inference is commonly viewed in two steps:

(1) Represent the empirical data in terms of a prob-

ability distribution.  (2) Draw causal conclusions

from the conditional independencies exhibited in that

distribution.   I challenge this reconstruction by ar-

guing that the empirical data are often better parti-

tioned into different domains and represented by a

separate probability distribution within each domain.

For then their similarities and the differences provide

a wealth of relevant causal information.  Computer

simulations confirm this hunch, and the results are

explained in terms of a distinction between predic-

tion and accommodation, and William Whewell’s

consilience of inductions.  If the diagnosis is correct,

then the standard notion of the empirical distinguish-

ability, or equivalence, of causal models needs revi-

sion, and the idea that cause can be defined in terms

of probability is far more plausible than before.
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1 Cause and Correlation

Someone knocks on your door selling subscriptions

to the Wall Street Journal.  “Did you know,” the

sales pitch begins, “that the average reader of the

Wall Street Journal earns more than $70,000 a

year?”  You have just been told that there is a posi-

tive correlation between “Wall Street Journal reading

and income level, and you have no reason to dispute

the premise.  But should you conclude from the

premise that your subscribing to the Wall Street

Journal will increase the chances of increasing your

income to over $70,000 (supposing that you are a

philosopher)?  Anyone with an ounce of common

sense knows that the causal claim does not follow

from the stated correlation.1

Causal inference is not easy, and there are many

complications besides the one illustrated in this ex-

ample.  However, there has been much progress in

recent years on the problem of causal inference, and

even automated causal reasoning done by computers

(see Korb and Wallace (1997) and Spirtes et al

(1997) for brief surveys).  The purpose of my article

is to argue that this recent work is based on an in-

complete picture of causal inference.

Think of causal inference as having two parts.

First, one uses the statistical data to make inferences

about probabilities.  This involves standard forms of

statistical inference, and here there are disputes about

which statistical methodology is best.  For example,

Spirtes et al (1993) favor a more classical approach,

whereas Korb and Wallace (1997) prefer a Bayesian

                                                     
1 I believe that I first read an example like this in Cart-

wright (1983).
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methodology.  However, all sides agree that the hard

and interesting part of causal inference arises in the

second step, in which causal conclusions are drawn

from the probabilistic facts.  They also agree that this

second step will, at best, lead to a class of causal

models that are indistinguishable (Spirtes et al

(1993)), empirically equivalent (Verma and Pearl

(1991)), or observationally equivalent (Hoover

(1993)).  That is, the probabilistic facts must under-

determine the causal facts.  This under-determination

shows that the concept of cause presupposed in stan-

dard causal modeling cannot be defined in probabil-

istic terms.  Cause does not reduce to probability, in

other words.  If the received view of causal inference

is correct, then this conclusion is correct.  But the

received view is not correct.

I would be committing the fallacy of denying the

antecedent if I were to conclude that cause does re-

duce to probability.  But I can at least conclude that

reductionism is, once more, an open question.  Re-

ductionist views are still criticized in the recent lit-

erature (Hausman, forthcoming), and there has been

recent dispute between Papineau (1989, 1991, 1993)

and Irzik (1996).  So, my main thesis, if correct,

promises re-invigorate the reductionist side of the

debate.

I agree that causes do not reduce to correlations,

partial correlations, or conditional dependencies.

However, if one includes information about how cor-

relations change from one situation to the next, or

more exactly, how correlations do not change, then a

reductionist view of causation is more plausible.

There has been an active discussion of this idea of

invariance in philosophical literature over the years.

It was something I called cross-situational invariance

in Forster (1984), which was taken up and discussed

in Hooker (1987).  The notions of resilience (Skyrms

1980), homogeneity (Salmon 1971), and robustness

(Redhead 1989) are related, although a closer ap-

proximation is found in Arntzenius (1997), Harper

(1989), Hoover (1994), Simon (1953), Sober (1994),

and Woodward (1993, 1997, 1998).  An early devel-

opment of the epistemological idea comes in the

form of Whewell’s famous notion of the consilience

of inductions circa 1840 (see Butts (1989) for a good

collection of Whewell’s writings in the philosophy of

science).  Whewell values the agreement of inde-

pendent measurements of theoretical quantities as

one of the most persuasive kinds of confirmation in

the history of science.  Forster (1988) is an applica-

tion of Whewell's consilience of inductions to a

problem Cartwright (1983) raises about the under-

determination of component forces in Newtonian

mechanics (a violation of the facticity requirement,

as she put it).

Despite this wide ranging discussion in the philo-

sophical literature, the idea is not built into the de-

sign of any of the standard methods of automated

reasoning in existence today, as far as I am aware.

Here is a simple example to motivate the rele-

vance of the idea in causal reasoning (Arntzenius

(1997)).  At a time when there were relatively few

smokers, the percentage of lung cancer victims who

were smokers was practically zero.  Yet nowadays,

especially in countries with higher numbers of smok-

ers, that percentage will be much higher.  That is, the

chance that someone smokes given that they have

lung cancer depends on the base rate of smokers.

Yet, the forwards probability of lung cancer given

smoking will be relatively stable.  This is just as the

hypothesis that smoking causes lung cancer predicts.

But note that this prediction goes beyond the simple

prediction that there is a positive correlation between

smoking and lung cancer.  That is why a reductionist

should not expect that cause reduces to correlational

facts alone.

Spirtes et al (1993) recognize that correlations

alone do not uniquely determine a causal hypothesis.

The same point is clearly stated by the originator of

causal modeling (Wright (1923, p.254) in response to

critics: “The method of path coefficients does not

furnish general formulae for deducing causal rela-

tions from knowledge of correlations and has never

claimed to do so.”  But instead of concluding that

there must be other kinds of empirical information,

Spirtes et al (1993) authors embrace the non-
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reductionist conclusion.2  Their view is that this is

the best we can do.  The plausibility of their position

rests rather heavily on the idealization, mentioned

earlier, that the data is correctly and completely rep-

resented in terms of a single probability distribution

of the space of possible events.  But if there is other

empirical information available, then this is not the

best we can do.

My main thesis is that information about the vari-

ability of correlations is most often available and it is

causally relevant.  Therefore, many standard ap-

proaches to causal inference, including Spirtes et al

(1993), are incomplete.  The hard problem is to say

what invariance is and how it is relevant to causal

inference.  That is the task I will begin in this paper.

The paper is organized as follows.  Section 2 ex-

plains the recent debate about the reduction of cause

to probability, and argues that the well known dis-

tinction between the prediction and the accommoda-

tion of evidence is relevant to this debate.  Here I

begin to explain how the added element of invariance

ties into these issues.   Section 3 describes a theorem

(in Verma and Pearl (1991)) about the empirical in-

distinguishability of causal models found in the lit-

erature on automated causal inference.  In section 4, I

examine what causal models say about probabilities

and the invariance of probabilities, and this is ex-

tended in sections 5 and 6.  The crux of this paper

comes in section 7, where I argue that the correct

understanding of the equivalence of causal models is

quite different from what Verma and Pearl (1991)

assume.  Yet, the question about the empirical

distinguishability of causal models is not really re-

solved until section 8, where I use computer simula-

tions to demonstrate how Whewell’s consilience of

                                                     
2 It is unclear to me whether Wright draws the same

conclusion, for he also says (p. 241) that he “accepts the
viewpoint that our conceptions of causation are based
merely on experience.”  And later (p. 252): “The formula-
tion of hypotheses is emphatically the business of one who
is thoroughly familiar with the realities of the case.”  If he
is a reductionist, then he certainly fails to give a clear ac-
count of the “experience” or the “realities of the case” on
which the concept of causation is based.

inductions adds new information about the invari-

ance of correlations.   Finally, this is tied into the

earlier discussion of prediction and accommodation.

2 Prediction versus Accommodation

Cause is not the same as correlation.  For example,

suppose that we find that there is a higher frequency

of heart disease amongst coffee drinkers than

amongst the rest of the population.  Should we con-

clude that coffee drinking causes heart disease?  Not

on the basis of this evidence, for there is an alterna-

tive explanation of the correlation:  coffee drinkers

tend to smoke more frequently than those who do not

drink coffee, and smoking causes heart disease.  If

this explanation is correct, then giving up coffee will

not help prevent heart disease (whether you are a

smoker or not).  You should give up smoking instead.

If there are just two variables, coffee drinking c,

and heart disease h, then the correlational facts do

not determine that c causes h because other causal

hypotheses predict the existence of the correlation.

Therefore, cause does not reduce to correlation.  The

standard reply to this argument is to say that we need

to consider background variables.  If we include the

correlations of smoking s with c and h, then there

may be a correlational asymmetry that resolves the

ambiguity in the causal explanations.  For example,

suppose that the same studies that show a correlation

between coffee drinking and heart disease also show

that the correlation disappears once the smokers are

separated from the nonsmokers.  Amongst smokers,

coffee drinking is not correlated with heart disease,

and amongst non-smokers, coffee drinking is also

uncorrelated with heart disease.  (That this is consis-

tent with there being a correlation between coffee

drinking and heart disease in the population as a

whole is know as Simpson’s paradox.)  On the other

hand, the correlation between smoking and heart dis-

ease does not disappear in the same way.  Smoking

increases the chance of heart disease amongst coffee

drinkers and non drinkers alike.  So, there is a corre-

lational asymmetry between smoking and coffee

drinking with respect to heart disease, which may
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ground the causal asymmetry between coffee drink-

ing and smoking in their relationship to heart disease.

Philosophers commonly describe this by saying

that smoking (or non-smoking) screens-off coffee

drinking from heart disease, while coffee drinking

does not screen-off smoking from heart disease.

Statisticians describe the same facts in terms of par-

tial correlations, and computer scientists and statisti-

cians refer to conditional independencies.  Facts

equivalently described in terms of the presence or

absence of partial correlations, screening-off rela-

tions, or conditional independencies, all count as cor-

relational facts for the purposes of this paper.

Irzik (1996) claims that this asymmetry between c

and s in relationship to h does not resolve the ambi-

guity in the direction of the causal arrow from s to h.

For the observed screening-off relations in our sim-

ple example is compatible with a quite different

causal model (see Figure 1); one in which present

smoking is an effect of having heart disease in the

future.  One reason we tend to dismiss the model in

Figure 1 is that it postulates backward causation. But

reductionists like Papineau, and myself, decline to

use temporal restrictions in their analysis, for then it

is no longer a reduction to probabilistic facts alone.

So, the existence of this alternative explanation is a

real problem for anyone who thinks that the prob-

abilistic facts uniquely determine the causal struc-

ture.

At this point, it is possible for a reductionist to

invoke the same defense as before.  Perhaps if we

include still further background variables, a further

correlational asymmetry will emerge that will resolve

the current remaining causal ambiguity.  However, it

is implausible that all ambiguities will ever be re-

solved because we introduce new ambiguities every

time we add background variables.  In fact, the theo-

rems of Verma and Pearl (1991) and Spirtes et al

(1993) support this view.  This is somewhat discon-

certing from an inferential point of view.  For it

seems that we cannot unambiguously infer that

smoking causes heart disease even if we know every

correlational fact there is.

For that reason, I wish to explore the possibility

that other kinds of information are relevant to causal

questions.  One valuable insight is that there is a

sense in which Irzik’s alternative model does not ex-

plain or predict the screening-off relation, since the

model in Figure 1 does not require it.  The model

merely accommodates the screening-off relation in

the sense that it is consistent with it.  In contrast, the

model that we all believe predicts that the screening-

off relation must occur.

A famous example of the difference between pre-

diction and accommodation arose in the way Ptolemy

and Copernicus accounted for various regularities of

planetary motion. One noticeable phenomenon is

that, while planets generally wander against the fixed

stars in the same direction, they sometimes move

backwards for a while, and then forwards again.  The

backwards motion is called retrograde motion.  But

even more interestingly, the retrograde motion of the

outer planets occurs when and only when the Earth is

between the Sun and the retrograding planet.  That is,

the outer planets retrograde when and only when in

opposition to the Sun.  Copernicus claimed to have

explained this phenomenon as a necessary conse-

quence of his model.  His explanation went like this:

All the planets revolve in the same direction and the

inner planets revolve more quickly, and therefore

overtake the outer planets periodically.  When that

happens, the planet appear to move backwards

against the fixed stars.  But this ‘overtaking’ can only

occur when both planets are on the same side of the

Sun because the Sun is in the middle of both orbits.

In Ptolemy Earth-centered theory, on the other hand,

the sun was not at the center of the planetary orbits,

s h

c

Figure 1:   Irzik’s alternative model.  s =
smoking, c = coffee drinking, h = heart disease
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so there was no such necessary consequence.  How-

ever, Ptolemy’s geocentric theory could allow that

the retrograde motion of planets occurs only in oppo-

sition to Sun.  Ptolemy accommodated the observed

phenomenon, while Copernicus predicted (or post-

dicted) the phenomenon.

This contrast is not an artifact of this example.

If we precede further in the history of planetary as-

tronomy, we see that Newton’s theory succeeded in

predicting (or postdicting) that the inner planets will

revolve more quickly, while Copernicus was only

able to accommodate this fact.  Examples of the same

distinction abound throughout the history of science.

Irzik’s example exhibits the same distinction.

There is a phenomenon—a screening-off relation—

exhibited in the statistical data.  It is predicted by the

hypothesis that smoking causes heart disease, but it is

not predicted by the alternative causal model in Fig-

ure 1.  That model is only able to accommodate the

screening-off.  The smoking hypothesis is ‘Coperni-

can’, while the alternative hypothesis is ‘Ptolemaic’.

One model predicts observed screening-off while the

other model does not.  So, there is a straightforward

empirical reason for favoring the ‘Copernican’

model.

However, the situation is not quite that simple.

The first complication is that the very best models in

science do not, and should not, predict all observa-

tional facts.  There is always some accommodation

needed.  For example, Newton’s theory of gravitation

did not predict the masses of the Sun and the planets,

or their initial positions and velocities.  Those as-

pects of the phenomena are merely accommodated.

Once accommodation is complete, the theory makes

precise predictions of everything else, but that is per-

fectly analogous with Ptolemy’s model.

But what exactly is the methodological lesson

here?  It could be that a theory should predict as

much of the phenomena as possible, and the model

that successfully predicts the most is favored.  Or it

may be that there is some prior analysis of which

aspects should be predicted and which should be ac-

commodated.  I believe that the correct answer is a

mixture of both.

In an interesting paper, Bogen and Woodward

(1988) develop the idea that there is a two step pro-

cedure involved in comparing any theory with the

observational data.  The first step is to infer the phe-

nomena from the observational data.  For instance,

first establish an empirical generalization, often

called ‘effects’ in physics (the Zeeman effect, the

Hall effect, the photo-electric effect, and so on).

Then look for explanations of those phenomena.

However, even the best theories in the history of sci-

ence do not succeed in predicting every aspect of the

known phenomena.    For example, the fact that all

planets revolve around the Sun in the same direction,

though predicted by Descartes’ vortex theory, was

merely accommodated by Newton’s theory of gravi-

tation.

Which aspects of the phenomena should a the-

ory predict, and which parts should it merely ac-

commodate?  There appears to be no a priori answer

to this question, for it is a question about how we

should compare theories.  However, there is a second

question we could ask: Which aspects of the phe-

nomena can a theory predict, and which parts can it

not predict?  To answer this question, we need to

examine the theory closely.

This two-step process bears a striking resem-

blance to our previous division of causal inference

into two steps.  The first is an inference to probabil-

istic facts, and the second is an inference from prob-

abilities to causes.  The inferred probabilistic facts

play the role of phenomena in the Bogen and Wood-

ward scheme.  But which aspects of the phenomena

can a causal model predict, and which parts should a

model merely accommodate?  We know that a causal

model can predict conditional independencies, and I

think it should.  But whether this is all that a causal

model can predict depends on the causal models,

which is why I plan to examine them carefully in

later sections.

For now, my point is that the standard analyses

of causal inference commit themselves to the as-
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sumption that a model should predict all the condi-

tional independencies exhibited in a single (statisti-

cally inferred) probability distribution.  From this

principle, we may eliminate Irzik’s example on the

basis of the empirical data.  However, there are other

causal models that cannot be eliminated.  In Figure 2,

the model on the far left, in which smoking is a

common cause of coffee drinking and heart disease,

is the one we believe.  But the two models to the

right of it predict exactly the same conditional inde-

pendencies.  Therefore, the correlational facts under-

determination the causal facts.  In the next section, I

will examine the argument in more detail.

3 The Alleged Indistinguishability of
Causal Models

Let me begin by describing causal inference accord-

ing to Spirtes et al (1993).3  First, some preliminary

definitions.  First, we need to introduce the terms

“parent”, ancestor”, and “descendent”.  A variable a

is a parent of a variable b if and only if there is an

arrow from a to b.  The parent of a parent, or the par-

ent of a parent of a parent, and so on, are called an-

cestors.  A parent, in other words, is an immediate

ancestor.  Finally, b is a descendent of a if and only

if there is a causal path from a to b that moves along

arrows in the forward direction.  A system S of vari-

ables is causally sufficient if and only if for every

pair of variables a, b in S, if there is a variable c from

which there is a causal path to a and also a causal

path to b, and the two paths do not intersect each

other except at c, then c is in S as well.  That is, for

every pair in S, every common ancestor is also in S.

                                                     
3 My exposition is borrowed from Glymour (unpub-

lished).

A causally sufficient system is one in which all

common causes are included.   There are no “latent”

common causes, in other words.

The next step is to say what conditional indepen-

dencies are predicted by a sufficient causal model

without loops (such models are called acyclic).

Markov Condition:  In a causally sufficient system
described by an acyclic causal model, conditional on
any set of values of all of its parents, every variable
is independent (in probability) of the set of its non-
parent non-descendents.

In Figure 2, assuming that {c, s, h} is causally suffi-

cient, the Markov Condition implies exactly the same

conditional dependency; namely that c and h are in-

dependent conditional on any fixed value of s

(smoking or non-smoking).  By the same token, there

are no conditional dependencies predicted by Irzik’s

model in Figure 1, despite the fact that the model can

accommodate the same conditional independence.  If

conditional dependencies are the only phenomena

that causal models predict, then it follows that the

three models in Figure 2 are empirically indistin-

guishable.  Of course, I plan to dispute the antecedent

of this conditional.

In an interesting paper, Verma and Pearl (1991)

claim to give a complete characterization of when

two causally sufficient models are equivalent ac-

cording to a technical definition that I will not repeat.

They interpret this definition to capture the idea that

“Two causal models are equivalent if there is no ex-

periment which could distinguish one from the

other.”  (Verma and Pearl (1991), p. 255.)   The

whole point of my paper is to show that their defini-

tion does not capture the idea of empirical distin-

guishability at all, so I will refer to their technical

notion of equivalence as VP-equivalence.  Their no-

c h c h c h

s s s

Figure 2:  All three causal models predict the same conditional independencies.
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tion is correctly interpreted as saying that two causal

models are VP-equivalent if there is no experiment

which could distinguish one from the other on the

basis of conditional independencies alone.  Here is

one of the theorems they prove.

Theorem 1:  Two causal models are VP-equivalent if
and only they have the same links and the same un-
coupled head-to-head chains.  To say that two vari-
ables are linked is that say that they are connected by
an arrow.  a → c ← b is a head-to-head chain.  It is
uncoupled if and only if a and b are unlinked.

So, all the models in Figure 2 are VP-equivalent by

this theorem because they have the same links, and

none of them have head-to-head chains.  However,

they are not VP-equivalent to Irzik’s model in Figure

1 because it has an extra link (although it also has no

uncoupled head-to-head variable).  On the other

hand, the model in Figure 3 is not VP-equivalent to

any of these models, because although it has the

same links as the models in Figure 2, it has an un-

coupled head-to-head variable.

Despite the fact that Irzik’s model is empirically

distinguishable from the three models in Figure 2

(my definition and Verma and Pearl’s share this con-

sequence), it does not follow that the model is in fact

distinguished from them.  Suppose that Irzik’s model

were true, and per chance, c and h come out to be

independent conditional on s.  Then any causal infer-

ence based on conditional independencies would

eliminate the true model from contention because it

did not predict the phenomenon.  Spirtes et al (1993)

do not see this as a problem because such mistakes

will be rare.  They proceed on the assumption that

none of the conditional independencies exhibited in

the data arise from such accidental circumstances,

which they call the Faithfulness Condition.  I agree

with them that it is a methodologically respectable

assumption to make.  Every scientific inference is

equally prone to the same kind of mistake.  It could

have been possible that Ptolemy’s geocentric theory

was true, and that the fact that retrograde motion of

the outer planets always occurred in opposition to the

Sun was a mere coincidence.  Such risks are the price

of business in science.  On my view, the Faithfulness

Condition is founded on a healthy respect for the dif-

ference between prediction and accommodation.

The Markov Condition is more problematic.

The problems come in two forms.  The first problem

is about whether it is always true in a causally suffi-

cient set of variables, while the second problem con-

cerns the very existence of that precondition—that a

set of variables is causally sufficient.   I will discuss

these in turn.

Consider the case in which a and b are causes of

c (Figure 3).  The Markov Condition implies that a

and b are probabilistically independent.  Suppose that

a and b are probabilistically dependent, which is to

imply that they are correlated.  This finding is con-

sistent with the causal model in Figure 3 if and only

if there is a common cause variable not shown in the

diagram.  However, there are several ways in which

uncaused correlations may arise.4  For one, there are

strange correlations in quantum mechanics for which

there is no common cause.  In response, Spirtes et al

(1993, p. 64) state that “In our view the apparent

failure of the Causal Markov Condition in some

quantum mechanical experiments is insufficient rea-

son to abandon it in other contexts.”  Their response

is quite reasonable from a practical point of view.

However, there are ways in which causally un-

related variables may become entangled as a pure

artifact of the way the data is pooled together, which

may happen in any example.  Suppose that there are

                                                     
4 The fact that some correlations need not arise as the

result of a common cause is well documented in the philo-
sophical literature under the title “counterexamples to Rei-
chenbach’s principle of common cause.” See Arntzenius
(1993) for a list of these counterexamples, with back refer-
ences to the philosophical literature on the subject.

c

a b

Figure 3:  a and b each cause c.
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two sets of experimental data, such that a and b are

independent within each of them, but that each vari-

able falls in a different range of values in each case.

For example, a and b may take on a low range of

values in the first data set, but high values in the sec-

ond data set.  When we combine the two data sets

into one, then a and b are correlated.  You can under-

stand why this happens by thinking of correlation as

an indicator relation:  a is correlated with b if and

only if one can make a better prediction about the

value of b by knowing the value of a than without

knowing it.  The variables are correlated in the

pooled data because information about a tells you

which data set it’s from, which in turn gives you in-

formation about the value of b.  Automated causal

inference looks at the conditional independencies in

a single probability distribution; presumably the one

that matches the pooled data.  So artifacts of this

kind could be a problem.

However, these doubts about the Markov condi-

tion simply compound a problem that exists.  For if

we need to know whether a system of variable is

causally sufficient before drawing causal conclu-

sions, then any inference from observed conditional

independencies is powerless.  The worst case sce-

nario is that, as Pearson once put it (quoted by

Wright (1923, p.250)), “The causes of any individual

thing thus widen out into the unmanageable history

of the universe.  The causes of any finite portions of

the universe lead us irresistibly to the history of the

universe as a whole.” 5  In fact, the situation is not as

bad as that, as Verma and Pearl (1991) and Spirtes et

al (1993) show in some detail (but also see Robins

                                                     
5 Wright (1923, p.250) claims that this problem arises

in any attempt at discerning the relative importance of he-
redity and environment in determining the characteristics
of a single given individual.  As he says, “the genetic con-
stitutions of two guinea-pigs, chosen at random from a
certain stock, undoubtedly trace back to numerous common
causes.”  However, he adds that the problem of determin-
ing the relative importance of the variation, or differences,
within a given stock can be “solved with great ease” be-
cause “in subtracting the total cause of one event from an-
other there is an enormous cancellation of common
causes.”

and Wasserman (1998)).  Nevertheless, if we are un-

able to eliminate the possibility of ‘latent’ common

causes, our causal conclusions are even more am-

biguous than what is already entailed by Verma and

Pearl’s Theorem 1.  There are severe constraints on

what can be inferred from correlational facts alone,

and this motivates an interest in other possible

sources of empirical information.

Here is a first step in that direction.  Consider

the following principle:

Principle of functional autonomy:  The mean value
of a variable c conditional on values of its parents {a,
b} does not dependent on the probability relations
amongst the parents.

For example, the function z f x y= ,1 6  defines a map-

ping from x y,1 6 values to z values, which does not

depend on the probabilities of x or y.  The same ap-

plies to conditional probabilities.  For example, the

probability of A given B and C, viewed as a mapping

from B and C to a probability value for A, does not

depend on the probability of B and C.  This is a basic

fact about functional relationships, so the principle

not new or controversial.

Some of the applications of this principle that

have important nontrivial consequences.  Suppose

that a causal model asserts that the causal dependen-

cies of c on a and  c on b are the same in two differ-

ent causal contexts:  In the first situation a and b are

causally unconnected, while in the second situation,

a is the cause of b (see Figure 4).  The ‘composite’

causal hypothesis specifies exactly what is the same

and what is different in the two situations.  By hy-

pothesis, c has exactly the same functional depend-

ence on a and b in both situations.  Let me refer to a

model that assumes that some causal relations are

c c

a b a b

Figure 4:  c has the same causal dependence on a and b
in both situations
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cross-situationally invariant as a unified model.

Causal inferences commonly rely on such models

when manipulations break some, but not all, causal

relationships.    The Markov Condition captures the

differences between such situations, but not their

similarities.   As far as conditional independencies

go, the two situations have nothing in common (re-

member that the correlation between a and b marks

their difference, not their similarity).6  So, under the

received view, it is not clear that one is ever any rea-

son to favor the unified model over and a disunified

model that treats the two situations having nothing at

all in common.  Or to put the point a different way, if

one is able to favor the unified model, then there is a

tacit appeal to evidence that goes beyond conditional

independencies; namely, the invariance of the func-

tional dependence of c on a and b.

As charity demands, I am assuming that the data

pertaining to the two situations is not pooled in this

case.  If it pooled, then the received view faces the

opposite problem:  There are can be no inferred dif-

ferences.  Either way, something is being missed.

It appears that not only conditional independen-

cies but also conditional dependencies are relevant to

causal inference.  But is this a serious concession for

the received view?  Isn’t it the case that the received

view automatically takes this information into when

comparing the fit of the unified model and the disuni-

fied model?  Unfortunately, this hunch is incorrect.

It is not the existence of conditional dependencies

that is relevant, but the fact that they do not change

from one situation to the next.  This information is

not utilized in the standard methods of causal infer-

ence.

While the nature of this new empirical informa-

tion is still unclear, its existence is enough to under-

mine the standard interpretation of the ‘indistin-

guishability’ theorems.  These theorems do not es-

                                                     
6 As charity demands, I am assuming that the data per-

taining to the two situations is not pooled in this case.  If it
pooled, then the received view faces the opposite problem:
There are can be no inferred differences.  Either way, the
received view is in trouble.

tablish that VP-equivalent models are empirically

indistinguishable, as Verma and Pearl (1991, p.255)

claim.  I hope to drive this point home in the final

sections.

4 The Modal Content of Causal Models

Here is the simplest case of two causal models that

are indistinguishable by conditional independencies

alone: a → b versus a ← b (they have the same links

and the same uncoupled head-to-head variables).   I

imagine that if I can show that these two models are

empirically distinguishable, without extending the

context to include new variables, then the point will

have an impact.  For the simplest case is the hardest

case.

Therefore, I will consider two such models within

the framework of path analysis (Wright 1921, 1923),

which is the same framework assumed by Irzik

(1996).7  In this section and the next, I shall discuss

the content of such models, and then extend the dis-

cussion to include their empirical content and em-

pirical distinguishability in later sections.

To make the example less abstract, consider one

of those dimmer switches that adjust the intensity of

a ceiling light.  Let X be the angle at which the knob

is turned, and Y the intensity of light.  In this exam-

ple, the argument against the reduction of cause to

probability is that the correlation between X and Y is

symmetric, and cannot mark the difference between

X causing Y (which is what we believe) and Y caus-

ing X.  In this simple example, there are two causal

models to consider:

Model 1:    Y X U= + +α α0 1

Model 2:    X Y U= + + ′β β0 1

Model 1 is the model we use if X causes Y and Model

2 is the one to use if Y causes X.  In each case, the

                                                     
7 I am assuming that causal models, so-called, do

genuinely capture the notion of cause. Humphreys and
Freedman (1997) complain that such assumptions are un-
justified.  But if causal models do not capture the notion of
cause, then they don’t say what does.  Whatever the an-
swer, the concept that is captured by causal modeling is a
rich, powerful, and interesting, notion worthy of discus-
sion.
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variable on the left is called the dependent variable,

and the other variables are called independent vari-

ables (the terminology is a little confusing because

‘independent’ here has nothing to do with probabil-

istic independence).

Note that the model is written here for a single in-

stance, so X and Y refer to ‘token’ events.8  In the

instance in question, X, Y and U will have particular

values.  The U term is often referred to as the residue

term.  The idea is that an equation stripped of the

residue term, like Y X= +α α0 1 , represents the ‘sig-

nal’, the trend, or the regularity between Y and X,

while U is the noise, or error.  (‘Noise’ would be the

most appropriate term for this paper, but it is not

standard.  ‘Error’ has unwanted connotations, so I

will use the term ‘residue’.)  Alternatively, the equa-

tion Y X= +α α0 1  may be thought of as describing

the mean curve because standard assumptions made

about the residue term imply that, for any fixed value

of X, the mean value of Y is equal to α α0 1+ X .

The model claims that the value of Y is a certain

function of the values of X and U.  If there are many

events under consideration, as is usual, then the same

equation is applied to them as well, with the same

parameter values.  The α s and the β s are constants.

However, it is wrong to think of exactly the same

variables, X, Y, and the U, as applying to new set of

events.  They should be subscripted, to indicate that

different instances are involved.  I will say more

about this in a moment.

Let me concentrate on Model 1, so that Y is the

dependent variable and X is the independent variable.

Everything to be said will extend to Model 2 by tak-

ing X to be the dependent variable and Y the inde-

pendent variable.  The term UY  is the residue, which

allows the model to cover the situation in which X

alone does not determine the value of Y exactly, but

only approximately or probabilistically.  Probability

                                                     
8  Hitchcock (1995) discusses the distinction between

‘token’ and ‘type’ causation, or ‘singular’ and ‘general’
causation in a way that nicely complements what I am go-
ing saying.

enters the model via probability assumptions made

the residue.  In particular, U is assigned a probability

distribution for every value of the independent vari-

able X.  The standard assumption, which I adopt, is

that the mean value of U is zero in each case.  This is

why the equation with the residue term stripped away

is the mean curve of Y on X.  There are no constraints

on the variances or other features of the residues.

By introducing these assumptions, we automati-

cally constrain the joint probabilities of the all the

variables because they are connected together in a

single equation.  More specifically, we know the

probability distribution of the dependent variable

conditional on any value of the independent variable.

Note that this applies even when Y is a nonlinear

function of X.  Also note that we have introduced an

asymmetry between X and Y, because we determine

the distribution of Y on X, but not the distribution of

X on Y, nor the distribution of any of the independent

variables.  (This is another application of the princi-

ple of functional autonomy introduced in the previ-

ous section.)  This asymmetry is represented by di-

rected graphs like those in Figure 5.

One sometimes sees the argument that Model 1

and Model 2 are equivalent because the equation of

Model 1 can be transformed into the equation of

Model 2 in the following way:

X Y U= − + −α
α α α

0

1 1 1

1 1
.

However, this is incorrect.  It is true that the pa-

rameters in this transformed equation are still con-

stants, and that the (unconditional) mean of the resi-

due term is zero, but the residue term does not have

mean zero conditional on any value of Y.  The point

is that the asymmetry between X and Y in Model 1

does not arise from the way that the equation is

X Y X Y

Model 1 Model 2

Figure 5
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written, but from the probabilistic assumptions made

about the residue.

Therefore, the content of Model 1 is not deter-

mined by the equationY X UY= + +α α0 1  alone.

Certainly, the equation plays a crucial role, but by

itself it is merely a definition of UY.  Many people

seem surprised by this claim, so let me argue for it.

The point is clearest when we think of the equations

in terms of standard regression analysis.  Let

Y X= +α α0 1  be some curve in the X-Y plane. The

residue, is defined as Y Y− , where Y is the true

value of Y (the one that is observed, say) and the sum

of these residues squared is called the sum of squared

errors, or the sum of squared deviations.  This defi-

nition applies universally to all such examples.  We

therefore write Y X U= + +α α0 1 , where

U Y Y≡ − .

U is a random variable because it is a function of

X and Y, which are random variables (a random vari-

able is just a variable whose values are assigned a

probability).  Although the residue may be explained

as arising from the action of other causes, that is not

necessarily true.  In an indeterministic world such as

ours, if quantum mechanics is a complete description

of reality, there may be no such causes.  Yet the resi-

due is still well defined, and causal models still ap-

ply.  So there are no causal assumptions built into the

definition of U.  For example, suppose we are meas-

uring the decay rate of a piece of radioactive uranium

over time.  There is nothing to prevent us from ap-

plying a standard regression analysis to this phe-

nomenon, despite the fact that the random deviations

of the actual decay numbers from the mean (expo-

nential) curve is not explained as arising from other

causes.  Thus, contrary to what Irzik claims (1996, p.

261), it is not essential that the residue U refer to an

event.  It is not a catchall for ‘other causes’.

Thus far, I have described the content of Model 1

in terms of its probabilistic consequences.  It is im-

portant that this does not, immediately, describe the

empirical consequences of the model.  For probabili-

ties, as I understand them, are defined over a space of

possible events, and not a set of actual events.  They

are not defined in terms of the frequency of instances

in a population of similar event.  The term ‘modal’

refers to the notion of ‘possibility’, so I describe the

content of Model 1 as modal.  It does have empirical

content when (but only when) auxiliary assumptions

are added to the model, but the topic of this paper

requires me to separate these very carefully.  So, let

me continue to describe the content of Model 1.

As an illustration, suppose I am about to turn the

dimmer switch 90°, and wish to consider its effect on

the light intensity.  The event will be X = 90° fol-

lowed by the event Y = 30 lumens, say.  But a prob-

ability function applies not just to these individual

events, but to every pair of possible events (X = x, Y

= y),  for all values of x and y. The set of all possible

event pairs is called the event space. A probability

over an event space entails much more than the prob-

ability of the occurrence of the actual events X = 90°
and Y = 30 lumens.  To put the point more dramati-

cally, though less accurately, the probabilistic hy-

pothesis supports counterfactual conditionals.9  It

entails the probability of the effect given counter-

factual events like X = 45°.  A probability function is

strongly modal (it refers to possibilities) and the re-

duction of cause to probability is therefore more

plausible than might be supposed at first glance.

Consider Model 1 (or Model 2) applied to a single

actual pair of event; say X = 90° and Y = 30 lumens.

The same equation also applies to the space of

counterfactual events of the same type (with the same

variable values) as well as to other event types (with

other variable values).  That is the sense in which X

and Y are random variables—they range over a space

of possible events.  On the other hand, the α s and

the β s are constants, because they have the same

value no matter which possible events are consid-

ered.

                                                     
9 The semantics of counterfactual conditionals is not

only modal, but also makes use of a similarity metric over
possible worlds, or something equivalent, while probabil-
istic assertions do not. So an appeal to counterfactuals
would be more problematic.
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Given the importance of this point to what fol-

lows, allow me to speculate about why the modal

character of probabilities is often overlooked.  The

first is the common urn model of probability.  If we

randomly choose a marble from an urn containing 9

white marbles and one black one, we calculate the

probability of drawing the black marble from the

proportion of actual black marbles in the urn.  But

the probability itself is not the proportion of black

marbles in the urn.  It pertains to an event space,

which in this case is the space of all possible draw-

ings from the urn in a particular instance.

Sometimes the modal nature of probability is ob-

scured when the conclusion of a statistical inference

is an assertion about proportions in a population of

actual events.  The interpretation of polling results is

an example.  Here we want to know the proportion of

actual American voters would vote Democrat if the

election were held today from a poll.  These propor-

tions are not probabilities over a space of possible

events, but the set of American voters.  But prob-

abilities in the modal sense are present in the model.

They are needed to define the assumption of random

sampling (one in which all American voters have an

equal probability of being included in the sample) or

to correct for non-randomness, and to correct for

other biases, like the probability that someone would

vote Democrat given that they say that they would

vote Democrat.

A third reason for the mistake arises because the

evidence for probabilistic hypotheses always derives

from a population of actual events.  To test a hy-

pothesis, it is not enough to check that the cause co-

occurs with the effect.  Rather, we must look at the

pattern of occurrences in a large number of rele-

vantly similar situations.  But it would be a deep

conceptual error to conclude that probability is there-

fore nothing more than the proportions of event types

within this set of repeated trials.  Multiple trials are

actually modeled by defining probabilities over the

Cartesian product of the event spaces for each trial.10

A common assumption is that the same probability

distribution applies to each trial and all trials are

identical and probabilistically independent (the so-

called i.i.d. assumption).  With this assumption, the

α s and the β s are not only constant within the space

of possibilities, but also over the population of in-

stances.

The familiarity of the i.i.d. assumption encour-

aged logical positivists to explore the idea that prob-

abilities might be defined by their connections with

the relative frequencies of actual events in large

samples, as exemplified by the law of large numbers

and other convergence theorems.  But these theorems

depend on the simplifying assumptions already men-

tioned.  So the positivist programme would only have

defined probabilities in a special case, which is why

a general definition of probability is unavoidably

modal in character.  For the same reason, the content

of any probabilistic hypothesis is strongly modal.

Having established that the probabilistic assump-

tion made about the residue is crucial to the content

of a causal model, let me state the assumption more

carefully:

Assumption 1:  The mean, or expected value, of the

residue is zero for every value of the independent

variable X.11  That is to say, the model equation

stripped of its residue term is the mean curve of Y

given X.  Formally, the assumption is that, for all x,

E U X x= = 0 , or equivalently, E Y X x=  =

α α0 1+ x .  I will use this assumption because it ex-

tends most naturally to the nonlinear case.

5 Dichotomous Causal Variables

Philosophers, and computer scientists, tend to be

trained in formal logic, and for that reason they stan-

dardly study probabilistic causality in the special

                                                     
10 See Hitchcock (1993a) for a more thorough discus-

sion of this point.
11 The expected value of a random variable, or any

function of random variables, is the average or mean value
weighted according the probability of those values.
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case in which all causal variables take on one of two

possible values.  These are called dichotomous, bi-

nary, or yes-no variables.  Equations like X = 1 and X

= 0 can be described as events A and not-A, respec-

tively.  The purpose of this section is to explain how

this special case falls within the more general

framework I am considering.  Therefore, all the les-

sons of this paper apply to the wealth of philosophi-

cal literature on this subject (e.g., Eells 1991).

Consider the special case of Model 1 in which X

and Y are dichotomous yes-no variables.  That is,

assume that the only possible events are X = 0, X = 1,

Y = 0, and Y = 1.  The values of 0 and 1 are chosen

arbitrarily.  Nothing essential depends on this choice.

In addition, Model 1 assumes the same basic equa-

tion as before:

Y X U= + +α α0 1 .

However, U now takes on four possible values:

{1 0 1− −α α , − −α α0 1 , 1 0− α , −α 0 }, depending

on which the four possibilities hold: X = 1 and Y = 1,

X = 0 and Y = 1, X = 1 and Y = 0, or X = 0 and Y = 0,

respectively.  As before, we assume that the expected

value of U is zero no matter what which value of X

holds.  In particular, the expected value of Y given X

= 1 isα α0 1+ , and the expected value of Y given X =

0 isα 0 .  If we now solve for the unknowns α 0  and

α 1 , we prove that:

α 1 1 0= = − =E Y X E Y X1 6 1 6 ,
and α 0 0= =E Y X1 6 .
But if the expected values are related to probabilities

by E(Y) ≡ 1.P(Y=1) + 0.P(Y=0), then:

α 1 1 1 1 0= = = − = =P Y X P Y X1 6 1 6 ,
and α 0 1 0= = =P Y X1 6 .
Therefore the constants (or parameters) of the model

are expressed in terms of probabilities.  Since the

constants (often called path coefficients) represent

the causal structure imposed by the model, this

proves that the causal structure is related to the prob-

abilities in an interesting way.

In standard statistical terminology,

r X Y P Y X P Y X→ = = = − = =1 6 1 6 1 61 1 1 0

is called the regression coefficient of Y on X.  In the

general case of non-dichotomous variables, the re-

gression coefficient has a more general expression,

but it is still a function of the probabilities and it is

still equal to the constant α 1 .

The assumption that α 0  and α 1  are constants im-

plies that the forward probabilities, P Y X= =1 11 6
and P Y X= =1 01 6  are constants.  The way I de-

scribe it, the forward-directed probabilities are

physical properties, or propensities, of the system

because α 0  and α 1  represent physical properties of

the system.  It is quite standard in physics and biol-

ogy that model parameters represent properties such

as mass, charge, or fitness.

In causal modeling, the parameters represent the

causal structure, which are a function of the forward-

directed probabilities.  On the other hand, the back-

ward-directed probabilities P X Y= =1 11 6  and

P X Y= =1 01 6  are not constants of the model.  Us-

ing Bayes Theorem, and the model equation, we can

show that,

P X Y P X P X= = = + = + =1 1 1 10 1 0 11 6 1 6 1 6 1 6α α α α
.So the backwards probabilities depend on the con-

stants of the model together with the probability

P X = 11 6 , but this probability is quite unconstrained

by the model (the principle of functional autonomy

again).  Therefore, according to the model, there is

no reason to expect the backwards probabilities to be

remain the same from one situation to the next.

There is an asymmetry between backwards and for-

wards probabilities implied by the model.

One such example appears in Sober (1994).  The

probability that two heterozygote parents (Aa) giving

birth to a heterozygote offspring is determined by the

laws of genetics to be ½, the probability that a het-

erozygote offspring had two heterozygote parents is

not determined by those same laws.

Another illustration is provided by a modified

version of the light switch example.  In our house, a

pair switches controls a single hall light.  The light is

on if the switches are up-down or down-up, and off if
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the pair is up-up or down-down.  The causal facts

about the wiring fix the probability of the light being

on given the switch settings.  But no causal facts

about this system determine the probability that the

switch setting is up-down given that the light is on. It

depends on the frequency of the switch settings,

which has to do with our psychological habits in op-

erating the switches, rather than the wiring itself.

6 Regression Analysis

I will now extend the analysis of yes-no variables to

the case of continuous variables.  Suppose that the

modelY X U= + +α α0 1  is the true one, where we

make only the weak assumption that the residue has

mean zero for all values of X.  There is a whole set of

probability distributions that are compatible with the

model.  The model does not entail any single one of

these probability distributions.  It only implies a dis-

junction of them.  If we ignore that fact, and wrongly

suppose that the content of the model is captured by

a single distribution, then the asymmetry between X

and Y disappears.  The reason is that for each distri-

bution there exists an “inverse” mean curve.  That is,

the probability distribution is also described by an

equation X Y U= + + ′β β0 1 , where ′U  has mean

zero for all values of Y.  But this symmetry is not a

problem for the approach I am developing because

the inverse mean curves are different for each prob-

ability distribution.  That is to say, the β ’s are not

constant, and do not represent physical propensities

of the system.  The inverse mean curve fails the in-

variance test.

7 Truly Equivalent Causal Models

Having carefully described the content of causal

models, we are in a position to properly define the

equivalence of two causal models.  As expected,

Model 1 and Model 2 will not be equivalent accord-

ing to this definition.  This is a surprising result be-

cause, as I will show, my definition of equivalence

looks remarkable similar to the definition of VP-

equivalence (Definition 1 inVerma and Pearl (1991)),

yet Model 1 and Model 2 are not VP-equivalent (as

follows easily from their Theorem 1).  However,

there is a subtle and important difference in the defi-

nitions that resolves the inconsistency, as I will point

out at the end of the section.  I will also argue that

their definition does not capture the relevant notion

of empirical indistinguishability.  To do this I need

some rather precise terminological conventions.

A model equation is an equation

Y f U= +X ;a1 6 ,

where X stands for a list of variables, α is a set of

parameters, and f is any function of those variables

and parameters, linear or nonlinear, and U is the

residue term.  f X ;a1 6  may be thought of as a family

of functionsg X1 6 , where each member of the family

is picked our by a specific numerical assignment of

values α.  The equation of Model 1,

Y X UY= + +α α0 1 ,

is an example of a model equation.  In this example,

X is a single variable X, and α is a pair of parameters

(α α0 1, ).  The specific equations Y X U= + +1  and

Y X U= − + +3 2  are different members of the fam-

ily.  A causal model is a model equation together

with the assumptions made about the residue.12  I will

adopt Assumption 1 in section 4 as the assumption to

make about the residue.  I will also assume that there

is a single, fixed, distribution for the residue that ap-

plies to all instances of the model equation.  None of

these assumptions are cast in stone, but they are

fairly typical.

Now consider a particular member of the family

Y f U= +X ;a1 6 .  That is, consider Y f U= +X v;1 6 ,

where v is a particular number assignment of values

to the parameters α.  Let us refer to this equation,

combined with the assumption about the residues, as

a causal hypothesis, as opposed to a causal model (so

a causal model is a family of causal hypotheses).

                                                     
12 This definition is easily extended to the case in which

there is more than one model equation, for more that one
dependent variable, as there would be for the model in
Figure 1, for example.  But, since the issues of this paper
are amply explained in terms of simple causal models, I
will postpone the general case for another time.
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The content of a causal hypothesis may be repre-

sented as a set of probability distributions over the

possible values of the variables Y and X that meet the

assumptions of the hypothesis.  That is, a causal hy-

pothesis may be represented by a set of probability

distributions p yx,1 6 , where x and y range over the

possible values of X and Y, respectively.  Denote the

causal hypothesis by H.  Then under the assumptions

we have made about the residue term, there will exist

a unique conditional probability function p yH x1 6 ,
such that such that p yx,1 6∈ H if and only if

p y px x,1 6 1 6   = p yH x1 6 ,
for all x and y.  In words, p yx,1 6  is in the family of

probability distributions representing H if and only if

the conditional probabilities it defines match the ones

predicted by the hypothesis. This constraint does not

determine a unique probability distribution, so every

causal hypothesis is represented by a non-singleton

family of probability distributions.  Logically speak-

ing, H may be thought of as asserting that, in any

given situation, the true probability distribution is

one of those in H.  H is a huge disjunction in other

words.  A probabilistic property is predicted, as op-

posed to accommodated, by H if and only it is in-

variant feature of all probability distributions in H.

For example, Model 1 predicts the forward con-

ditional probabilities.  Model 1 can accommodate

backwards probabilities, but they does not predict

them.  The opposite is true for Model 2.  That, for us,

is a very important distinction.

Our formal representation of causal models is

complicated by the fact that a model is a set of hy-

potheses and a hypothesis is a set of probability dis-

tributions.  It follows that a causal model is a set of

sets of probability distributions.  Verma and Pearl

(1991) appear to dump all the probability distribu-

tions into one superset, but if you do that, then the

distinction between Model 1 and Model 2 will disap-

pear.  I suspect that this is where Verma and Pearl

(1991) go wrong.

Two causal hypotheses are equivalent if and

only they are represented by exactly the same set of

probability distributions.  Two causal models, M1 and

M2, are equivalent if and only each hypothesis in M1

is equivalent to some hypothesis in M2 and each hy-

pothesis in M2 is equivalent to some hypothesis in

M1.  That is the correct definition of equivalence.

On this definition, Model 1 and Model 2 are not

equivalent.  In fact, they a disjoint, for there is no

hypothesis in Model 1 that is equivalent to any hy-

pothesis in Model 2, because Model 1 does not pre-

dict backward probabilities and Model 2 does not

predict forward probabilities.

Given that this result conflicts with a large body

of literature on automated causal inference, let me

spell it out in the simplest case imaginable.  In the

smoking example, let S = person x is a smoker, S =

person x non-smoker, D = person x develops heart

disease, and D  = person x does not develop heart

disease.  Let M1 be the model that says that smoking

cause heart disease, and M2 the model that says heart

disease causes (prior) smoking.  Let H1(θ, λ) be a

causal hypothesis in M1, where θ and λ are constants

that define the forward probabilities.  That is,

P D S1 6 = θ  and P D S2 7 = λ .  Now, each probabil-

ity distribution in H1(θ, λ) will assign numbers to the

probabilities of S & D,  S & D , S & L, and S & D

in the following way:

P S D&1 6  = θ P S1 6 ,
P S D&2 7  = 1− θ1 6 1 6P S ,

P S D&2 7  = λ 1− P S1 62 7  and

P S D&2 7  = 1 1− −λ1 6 1 62 7P S .

There are many such probability distributions in

H1(θ, λ) because there are many ways of assigning

numerical values to P S1 6 .  However, all the prob-

ability distributions in H1(θ, λ) share the property

that P D S1 6 = θ  and P D S2 7 = λ .  These are the

probabilities that H1(θ, λ) predicts.  M1 is not

equivalent to M2 because H1(θ,λ) is not equivalent to

any hypothesis in M2.
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Verma and Pearl (1991, p. 256), from what I can

gather from the paper, define equivalence in the fol-

lowing way (translated into my terminology).   M1 is

VP-equivalent to M2 if and only if every probability

distribution in some hypothesis in M1 appears in

some hypothesis in M2 and vice versa.  On this defi-

nition, M1 is VP-equivalent to M2 because any prob-

ability distribution determined by

P D S1 6 = θ , P D S2 7 = λ , and P S1 6  = ρ,

will be the same as the probability distribution de-

termined by

P S D1 6  = θ ρ θρ λ ρ+ −11 62 7 ,
P S D2 7  = 1 1 1 1− − + − −θ ρ θ ρ λ ρ1 6 1 6 1 61 62 7 ,
P D1 6  = θρ λ ρ+ −11 6 ,

and vice versa.  In words,  M1 is VP-equivalent to M2

because a probability distribution is accommodated

by M1 if and only if it is accommodated by M2.  They

have failed to respect the distinction between predic-

tion and accommodation.

The received approach to causal inference ap-

pears to view it as an inductive procedure that takes

us from empirical data to a causal model.  However,

it is better to view causal inference as an inductive

inference from data to causal hypothesis.  If we are

interested in causal models, then the causal model

can be inferred deductively from that point.  So, if

we focus on the equivalence of inductive hypotheses,

rather than models, we are not going to get muddled

about sets of sets probability distributions.  It seems

that everyone should agree that two causal hypothe-

ses are equivalent if and only if they share the same

probability distributions.  In fact, the formal defini-

tion of equivalence in Verma and Pearl (1991) looks

just like my definition of equivalent causal hypothe-

ses.  But somewhere along the line, they fail to keep

the distinction between hypotheses and models

clearly in mind (they use these terms differently, but

our differences are not merely terminological).

However, there is a sophisticated defense of

their approach, which argues that the notion of ac-

commodation is actually the right one.  They might

argue that the distinction between models and hy-

potheses not relevant.  Here is an argument:  Causal

inference is a two-step process.  The first step is to

infer a single probability distribution that best repre-

sents the empirical frequencies in the data.  All

causal conclusions must be based on this inferred

probability distribution, which takes us to the second

step of causal inference.  There is nothing else on

which to base the inference. Call the probability dis-

tribution Q.  The best fitting hypothesis in M1 will

succeed in predicting some features of Q and in ac-

commodating others.  But likewise, the best fitting

hypothesis in M2 will succeed in predicting just as

many features of Q and in accommodating the rest.

To assume that some features of Q are more worthy

than others for prediction as opposed to accommoda-

tion is the beg the question in favor of one model and

against the other.

The remainder of this paper is devoted to

showing that this argument is mistaken.  I think that

their picture view of causal inference is fundamen-

tally wrong.

8 The Consilience of  Causes

In section 4, I explained the sense in which the con-

tents of Model 1 and Model 2 are different.  I ex-

plained the difference in modal terms—in terms of

the content of single-case probabilities.  However, no

models are distinguishable by any observations made

in a single case.  That is a universal fact, true of any

kind of model in science.  One has to examine nu-

merous instances that are assumed to be identical in

relevant respects.  So, it is necessary to look at a

population of n events

X x Y y X x Y y X x Y yn n n n1 1 1 1 2 2 2 2= = = = = =, , , , , ,1 6 1 6 1 6< AK

Now, we need to further assume that the same model

applies to each instance.  That is, we must  compare

Model 1 applied to n pairs of events, against Model 2

applied to n pairs of events.  But this is still not suffi-

cient, and to understand why it is not is to understand

why one must respect the distinction between a

causal model and a causal hypothesis is vitally im-

portant in causal inference.   The reason is that the
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weak assumption that the same model applies in each

instance allows that different hypotheses in the

model apply in each instance.  Or to put it another

way, it allows that different values of the parameters

apply in each instance.  This means that there are at

least as many adjustable parameters as there are data

points, and we are no better off than we were in the

single instance.  There is no test of the model at all.

Therefore, when comparing two models, we must

assume that the same causal hypothesis applies in

each instance.  That is, we must assume that the pa-

rameters are constants.  Then, and only then, do we

have a crucial test of the models.

This bring us back to the assumption of identical

independent distributions (i.i.d.) referred to earlier.

The ‘identity’ part of the assumption implies not only

that the same model applies to each instance, but also

that the same causal hypothesis applies in each in-

stance.   Without this assumption, or something like

it, there would be as many parameters as there are

data, and it would be impossible to estimate their

values accurately.

However, it appears that Verma and Pearl

(1991) may circumvent this difficulty by first fitting

a single probability distribution to the data.  For in

that estimation problem, it is tacitly assumed that a

single probability distribution and therefore a single

set of parameter values apply to all the data.  That is,

i.i.d. assumption is built into this first step.  It follows

that, although the role of the i.i.d. assumption is cru-

cial to my point, it does not by itself prove that

Model 1 and Model 2 are empirically distinguish-

able.

So, let me push the question one step further.

Suppose one scientist does a regression of Y on X and

find a value of the parameters α 0  and α 1  that best

fit the data, while a second scientist does a regression

of X on Y, and finds values for β 0  and β1  that best

fit the data.  The degree of fit, in a sense, is the test

of the model.  But is it a crucial test?  That is, could

this procedure provide evidence for Model 1 that

counts against Model 2.  The surprising answer is

‘no’.

In fact, going by the degree of fit lead you to the

wrong hypothesis, as the following simulations show.

I generated 20 data points from a probability distri-

bution given by Y = X + U, where U is a normally

distributed residue with mean zero and variance 2,

and X is normally distributed with mean -20 and

variance 4.  The data points are shown in Figure 6.

Then I did a least squares linear regression of Y on X,

which is the (red) line in Figure 6 with the lesser

slope.  Finally, using the same data, I plotted a

‘backwards’ least squares regression taking X to be

the dependent variable and Y as the independent

variable.  The resulting best fitting curve is the (blue)

line with the greater slope plotted in Figure 6.  The

surprising fact is that the backwards regression fitted

better than the forwards regression, even though the

forwards model is the true on in this case.  I verified

that this was not an accidental feature of this par-

-24 -22 -18 -16

-26

-24

-22

-18

-16

-14

X

Y
(blue)

(red)

Figure 6: The line with the lesser slope (red) is the standard
regression curve of Y on X, while the other (blue) is the
regression curve of X on Y.

2 4 6 8 1 0 1 2 1 4

- 0 . 1 0 5

- 0 . 0 9 5

- 0 . 0 9

- 0 . 0 8 5

- 0 . 0 8

Figure 7:  The degrees of fit for the best fitting
forwards regressions (red) and backwards
regressions (blue) for 15 different data sets of 20
points each.  The backward regression fitted best
in each case.
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ticular data set by plotting a further 15 data sets like

this one randomly generated from the same distribu-

tion.  The backwards regression consistently fitted

better than the forwards regression in every case.

The fits are plotted in Figure 7.

 While the backwards regression curves fit the

seen data better, they are less predictively accurate.

This shown in Figure 8, where I have plotted the re-

gression curves for all 15 trial mentioned above.  The

true curve passes through the origin, and the predic-

tive accuracy of a regression curve is measured by it

closeness to the true curve  (see Forster and Sober

(1994) or Forster (forthcoming) for a more detailed

discussion of predictive accuracy).  The forward re-

gression curves pass fairly close to the origin, but the

backward regression curves, with one exception,

miss their mark by a wide margin.

  The example shows that a naïve empirical cri-

terion of model selection that says “choice the model

that fits case” will not work well.  The traditional

response to this fact is to amend the naïve criterion to

include simplicity as a factor in model selection.  The

problem is to say what simplicity is, and how it is

factored into a model selection criterion.  There is a

huge body of literature on this problem (see Forster

and Sober (1994), or Forster (forthcoming) for an

introduction).   The basic theoretical idea is that the

best fitting hypothesis in a model is subject to two

kinds of error.  The first is called model bias.  The

accuracy of a best fitting case is clearly limited by

what is available in the model to work with.  A best

fitting curve cannot be close to the true curve if there

are no curves in the model close to the true curve.  In

such a case, we say that the model is misspecified or

biased (Kruse (1997) uses the term ‘model error’).

In our example, Model 1 is unbiased because it con-

tains the true hypothesis.  Model 2 is not very biased

either because it contains a curve that passes through

the origin (it may not get the probability distribution

for the residue exactly right, but my example here is

designed so that it could do a good job here as well,

as we will see in a moment).

A second source of error is the estimation error

(Kruse (1997)), the overfitting error, or the more

simply, the variance of the estimates.  This is a kind

of sampling error in which random fluctuations expe-

rienced in small data sets will lead random variation

in the estimated values of the model parameters.  All

of the well known model selection criteria assume

that this kind of error increases proportionally to the

number of adjustable parameters in a model (or the

dimension of the model—see Forster (submitted)).

The number of adjustable parameters is therefore the

relevant measure of simplicity.  In the present exam-

ple, both models have the same number of adjustable

parameters (two).  And, indeed, from Figure 8, we

see that both models display roughly the same varia-

tion around a central mean value for their parameter

estimates.  However, the simplicity term will have no

effect on the comparison of Model 1 and Model 2 in

this example because the simplicity terms will cancel

out in all of the standard model selection.

The problem is that, in the case of the back-

wards regression, there is a third source of error,

which is not accounted for in any of the standard

model selection methods.  There is a systematic esti-

mation error whereby the mean parameter values are

not centered on the values that are the best in the

model.  The problem of causal model selection,

therefore, encounters a new kind of model selection

- 3 0 - 2 0 - 1 0 1 0 2 0 3 0

- 2 0

2 0

4 0

6 0

Figure 8:  While the true curve passes through the
origin, the fitted regression curves miss the mark.
However, the backwards regression curves (blue) are
systematically innacurate in a way in which the forward
regression curves (red) are not.
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problem.

What is the solution to this problem?  One idea

is that we need to use varied data (see Kruse (1997)

for an excellent discussion of how this affects the

maximization of predictive accuracy).  For example,

suppose we supplement the data shown in Figure 6,

centered at the point (−20, −20), with data centered

at the point (+20, +20).  The new more varied data

set is shown in Figure 10.  In this case, both the for-

wards and backwards regression lines will fit closely

to the true curve—I have verified that they are very

close in fit and in predictive accuracy.  However, this

does not solve our problem because we have not ar-

rived at a way of favoring the true model.  All we

have done is to removed a bias that favors the wrong

model.

Before offering a solution to this problem, let

me say why it is important.  One might argue that the

use of varied data shows that our problem is unim-

portant.  So what if we can’t use varied data to dis-

criminate in favor of the true model?   If closeness to

the truth, or predictive accuracy, is the principal goal

to which scientists aspire (Forster (forthcoming),

Forster and Fitelson (unpublished), Sober (unpub-

lished)), then I have shown that either model will

serve equally well if we use varied data.  Nothing

else matters.

The reply to this objection, note that predictive

accuracy is always relative to a domain (Forster

(forthcoming)).  In our example, the data centered at

the point (−20, −20) may be thought of as belonging

to one domain, while the data centered at  (+20, +20)

belongs to a second domain. To take predictive accu-

racy as a goal is to aim to maximize predictive accu-

racy in all domains.  After all, it was the failure of

regression curves fitted in Domain 1 (Figure 9) to fit

the data in Domain 2 that motivates the move to var-

ied data in the first place.  So the goal of predictive

accuracy is an open-ended kind of goal (like truth)

because it is meant to apply to an open-ended list of

domains.  The difference between Model 1 and

Model 2 will show up in other domains, even if it

does not show up in the combined domains of Do-

main 1 and Domain 2.  In causal models, we want to

predict what will happen under conditions of ma-

nipulation of various kinds.  If we manipulate the

variable X, then Model 1, being the true model, will

correctly predict the response of Y.  But Model 2

does not predict that Y will respond in the same way,

because it contends that X does not cause Y.  This

difference is a difference in predictive accuracy.

Of course, we could carry out such manipula-

tions (if we are able), and discriminate between the

models on that basis.  But our question is whether a

prior discrimination is possible.  If there is, then we

want to know about it.

An affirmative answer is already apparent in

Figure 8.  For if we test the regression curves fitted

to the data in Domain 1 against the data in Domain 2,

we see that Model 1 does significantly better than

Model 2.  The fitted curve in Model 1 will pass quite

close to the data in Domain 2, while Model 2 will

systematically miss its mark, usually by quite a wide

margin.  The solution is very familiar to philosophers

of science—we should test the models.  This kind of

test is known as cross validation in the model selec-

tion literature, although it is a little different from the

standard version of this criterion.13  The idea behind

cross validation is that we should divide the seen

                                                     
13 The method was developed by Mosteller and

Wallace (1963) to determine the authorship of disputed
Federalist papers.  An important theorem was proven by
Stone(1977), who showed that leave-one-out cross valida-
tion is asymptotically equivalent to Akaike’s AIC method.
Also see Turney (1994).
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Domain 2

Figure 9:  A varied data set.
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data into two subsets.  In machine learning, the first

subset is called the training data, and the second is

called the test data.  However, there are two standard

refinements of the idea.  The first arises from the fact

that, once the a model is selected, we should make

full use of the seen data in fitting the model, and this

is clearly correct.  It seems that we should make the

training set as close as possible to the full set, so that

the tested curve is as close as possible to the curve

we will eventually use for prediction.  So, the train-

ing data is taken to be the full data with one data

point left out.  But then we are only testing against

one data point, and our test will be unduly subject to

random sampling error.  It appears that the solution is

to repeat the leave-one-out test n times for each data

point, and averaging the results.  The model with the

highest average score wins.  However, this standard

form of cross validation will not solve our problem in

our example because the tested curves will very close

to the true curve in every case.  We need a non-

standard form of cross validation.

In our application, the data in Domain 1 is of a

different kind from the data in Domain 2 because

they cover different ranges of values for the variables

(both X and Y, so the division into kinds does not beg

the question against either of the competing models).

We should fit the models in Domain 1 and test

against Domain 2, and then fit the models to Domain

2 and test against the data in Domain 1.  The test ap-

pears to be the most discriminating because it tests

the ability of the model to ‘reach out’ from one do-

main into another.  It tests for extrapolation rather

than interpolation.  In our setup, this test favors

Model 1 over Model 2 (Figure 8).  Symmetry consid-

erations show that the opposite would be true if the

data were generated by Model 2 rather than Model 1.

There is a second way of performing the same

test.  First, fit each model separately to the two do-

mains of data.  We will end up with two sets of pa-

rameter estimates for each model.  Then score the

models according to whether their parameters esti-

mated in one domain agree with the estimates ob-

tained from the other domain.  The results will be the

same as before.

In the philosophy of science literature this kind of

test is referred to as the “agreement of independent

measurements.”  For example, Newton was able to

infer the mass of the Earth from terrestrial motion

and then estimate the same quantity from the motion

of the moon, and other phenomena, such as the pat-

terns of the tides.  The agreement of these independ-

ent measurements was impressive evidence for

Newton’s theory of gravitation, for it provided direct

evidence that terrestrial and celestial phenomena re-

sulted from a single cause.  Newton captured this

intuition in his famous first rule of reasoning (Book

III of his Principia): “We are to admit no more

causes of natural things than such as are both true

and sufficient to explain their appearances.”  In ref-

erence to this rule, an influential nineteenth century

historian of science claims that:

When the explanation of two kinds of phenomena,
distinct, and not apparently connected, leads us to the
same cause, such a coincidence does give a reality to
the cause, which it has not while it merely accounts
for those appearances which suggested the supposi-
tion. This coincidence of propositions inferred from
separate classes of facts, is exactly what we noticed in
the Novum Organon Renovatum, as one of the most
decisive characteristics of a true theory, under the
name of Consilience of Inductions.

That Newton’s First Rule of Philosophizing,
so understood, authorizes the inferences which he
himself made, is really the ground on which
they are so firmly believed by philosophers.
(William Whewell, in Butts (1989), p.330)

Notice that when Newton and Whewell talk about

explaining phenomena in terms of a common cause,

they are not talking about explaining two dependent

variables in terms of a single independent variable.

Their talk of ‘cause’ might be better translated as

‘law’.  In Newton’s case, the very same law, the in-

verse square law of gravitation, with exactly the

same parameter value (the gravitational mass of the

Earth) successfully explains two different kinds of

phenomena—terrestrial phenomena and celestial

phenomena.  This is exactly analogous to the cross

validation test I have been describing, which is why I
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will refer to the test as the consilience of inductions

from this point forward.

Finally, I note that this kind of test is not new to

causal modeling.  As Wright (1923, p.241) puts it, “if

the logical consequences [of a causal hypothesis] can

be shown to agree with independently obtained re-

sults, it contributes to the demonstration of the truth

of the hypothesis in the only sense which can be as-

cribed to the truth of a natural law.”

9 Discussion

In summary:  The consilience of inductions (note the

plural) requires (1) that we divide the total data set

into separate subsets, where each subset is of a dif-

ferent kind.  Then (2) we perform an induction on

each of the subsets separately.  By ‘induction’,

Whewell is referring to the process of fitting the

model to the data.  Finally, (3) we score a model ac-

cording to how well the two parts “jump together”

(as Whewell put it).  This may be measured by

looking at either the prediction error on the data not

used in the construction of the hypothesis or the ex-

tent to which the parameter values agree.

How does the consilience of inductions tie in

with our previous distinction between prediction and

accommodation?  Well, the consilience of inductions

is a direct test of ability of a model to predict phe-

nomena in one domain from data in a different do-

main.  Consider a comparison between Newton’s

gravitational model (N) against a conjunction of

Galileo’s law applied to terrestrial motion, and Ke-

pler’s laws applied to the motion of the moon (G &

K).  N and G & K are able to accommodate the total

data (to the level of approximation appropriate in this

example).  However, the disunified hypothesis G &

K is unable to predict the moons motion by fitting to

terrestrial motion, or vice versa.  It has the power of

accommodation, but not of prediction.  That is to say,

there is no consilience of inductions in G & K to

match the consilience of inductions for N.

The simulated example in the previous section is

entirely analogous, except for two things.  G & K

failed the prediction test because it makes no predic-

tions at all.  The estimation of parameters in G pro-

vides no information about the parameters in K.  In

contrast, Model 2 does make predictions in Domain

2, but they are not successful predictions.  The other

difference is that G & K is less unified than N (it has

more adjustable parameters), whereas Model 1 and

Model 2 are equally unified.  The two differences are

not unrelated.

The simulated example in this section clearly

shows that the consilience of inductions can dis-

criminate between two models even when no direct

test on the pooled data can.  This is a surprising re-

sult to many philosophy of science, who have sub-

scribed to the principle of total evidence, which says

that we should make use of all known evidence when

deciding between theories.  For the consilience of

inductions appears to violate this principle by using

only part of the data to construct the hypothesis and

part of the data to test the hypothesis.  Further con-

sideration shows that there is no real violation of the

principle because all the data is being used in the test

in one way or the other.  However, the principle may

have had a psychological effect in dissuading us from

examining these kinds of tests.

I began this paper with the following picture of

causal inference:  First, represent the data in terms of

a single probability function. Call the probability

distribution Q.  Second, exploit the conditional inde-

pendencies in this probability distribution in order to

draw the strongest possible causal conclusions.  To-

wards the end of section 7, I considered an argument

to a conclusion that appeared to deny that any test

like the consilience of inductions could work. The

argument went like this:  The best fitting hypothesis

in Model 1 will succeed in predicting some features

of Q and in accommodating others.  But likewise, the

best fitting hypothesis in Model 2 will succeed in

predicting just as many features of Q and in accom-

modating the rest.  To assume that some features of

Q are more worthy than others for prediction as op-

posed to accommodation is the beg the question in

favor of one model and against the other.  In the

simulated example, this conclusion does follow from

these premises, for if we obtain a single Q from the
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pooled data, then there was no test that favored the

true model over the false one.  Or to put it another

way, there is no test that favors the true model with-

out begging the question against false one.

But that is not how the consilience of inductions

proceeds.  If it is to fit into this kind of picture at

all,14 then it would go like this:  (1) Represent the

data in terms of a two probability functions, Q1 and

Q2; one for each of the two different kinds of data.

(2) Make separate causal inferences from  Q1 and Q2.

(3) Test each of the results to see how well the hy-

pothesis performs on the other domain of data.  (4)

Infer a composite causal model on the basis of those

results.

For each Q1 and Q2, there is a distinction being

made between aspects that it is good to predict and

those that should be accommodated.  Roughly

speaking, it is good to predict similarities, and good

to accommodate the differences.  But this distinction

does not beg the question for or against any particu-

lar hypothesis because the differences and similari-

ties between Q1 and Q2 are determined by the data.

There are two more important advantages of the

method as well:

• It respects the principle of functional autonomy

(section 3), which states that relationship of a

variable on set of causes is independent of the

relationship amongst those causes.  For even if

the relationship amongst the causal variables are

clearly different in Q1 and Q2, the consilience of

inductions can still test for the similarities pre-

dicted by a model.

• The test is less sensitive to the existence of ‘la-

tent’ common causes.  For if the ‘latent’ common

causes affect only the relationship amongst the

causes, then the dependence of the effect variable

on those causes is unaffected.

                                                     
14 I don’t happen to believe that this picture is accurate,

because the inferred Q will depend, in part, on the model
under consideration.  Nevertheless, it is a useful idealiza-
tion for the purpose of understanding the logic of confir-
mation.

The automated reasoners from the computer sci-

ences may grumble that this talk of “different kinds

of data” is vague and unhelpful.  It is vague, but it

has not been unhelpful to scientists.  It is unhelpful to

automated reasoners if they do not know how to pro-

gram a computer to divide the total data appropri-

ately.  I am not claiming, by any means, that this

cannot be done.  My conclusion is merely that causal

inference is harder than is standardly thought.  And,

as for many hard kinds of inference, subject to a

complex array of errors, scientists have adopted

methodological principles that manage these errors

(even if they have not analyzed them as such).  The

example of causal inference promises to be no ex-

ception.
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